

Rijksoverheid

International Green Deal

International Green Deal North Sea Resources Roundabout

Robine van Dooren Project Lead

RVO.nl

NSRR: the video

• <u>https://www.youtube.com/watch?v=Tb7Poc2CcOM</u>

NSRR based on Dutch Green Deal approach

- Bottom up approach: private initiative, government in role of facilitator (network, barriers, market)
- Goal: to boost sustainable innovations
- Scaling up: inspiring others; improving framework conditions; creating new networks

NB, No money & no guarantee of success

NSRR : the 1st International Green Deal

- Aims to create opportunities for Green Growth in North Sea countries by facilitating sustainable trade, transportation and uptake of secondary resources
- Geographical focus area: countries in North Sea region that consider themselves frontrunners in field of circular economy
- Not waiting for consensus between 28 EU member states, but start and aim to inspire

Rule 185: Follow the correct procedure at roundabouts

NSRR: what is it all about?

Annexes: cases of secondary resource streams

- Maximum number of cases to be included: 10
- Currently up and running: (1) Non-ferro metals from bottom ashes,
 (2) Compost, (3) PVC recycling and (4) Struvite

Issues

• Waste/EoW, waste shipment, REACH (quality, contaminants)

Common search

• Optimal use of possibilities within current (EU) legislative framework

Outcome

• Harmonisation between participating countries + trade contracts

NSRR: next steps

Making it grow!

- Addition of new participants, new countries and/or regions
- Information sharing & looking for scalable solutions
- Addition of new cases, e.g. WEEE, tyres, construction materials, textiles?
- Suggestions and applicants are welcome!

How does it work? - Application (1/2)

Apply as additional case in NSRR

- Contact us (Robine van Dooren, project lead)
- Through contacts with participating ministry
- Application of annex IGD NSRR after preparatory work

Criteria checklist

- Focused on international trade secondary raw materials
- Realistic (economic viable) and with a clear target
- Committed companies on both ends of the supply chain
- Generate spin off / solutions applicable to others
- Results in the short term (~2 years)
- Clear role for the government (including Inspectorates)
- Private initiator has to take the lead (secretariat)

How does it work? – Realization (2/2)

- Initiating companies take care of secretariat working group:
 - o problem analysis
 - o time table
 - proposal for solutions
- Government support per case:

 policy advisors/experts on content
 inspection

- NSRR secretariat:
 - o dissemination of results, lessons learned
 - organization of stakeholder events

Thank you for your attention!

Dr. Robine van Dooren

E-mail: robine.vandooren@rvo.nl

Slides for hand out

Exploring 'Global' Green Deals

- International interest EC, UNEP, France, UK, Germany, Belgium and Nordic countries
- Pragmatic start:
 - 'small and beautiful' with 'coalition of willing'
- Find suitable innovative initiatives
- Examine possibility of eliminating barriers
- Translate voluntary public-private agreements into the international domain
- Aim: 1st share of Global Green Deals delivered first half of 2016

Green Deal Ship generated waste

Initiative

• Optimize delivery of and promote separate delivery of plastic ship-generated waste

Initiators

• Port authorities, shipowners, -suppliers, port reception facilities, enforcement authority, NGO's, Government

Input by field parties

- minimize packaging waste from supplies
- further improve risk based enforcement
- facilitate and stimulate separate delivery of plastics. Recycling of clean plastics

Input by central government

• aim to harmonize procedures in EU ports, monitoring, linking parties and initiatives

Green Deal Transparency Natural Capital

Initiative

•Improving information on impact and dependencies on natural capital for businesses and their operations.

Initiators

•IUCN-NL, MVO-Nederland, True Price and 13 Dutch companies

Input by stakeholders

• Active participation in working groups exchange of experiences, tools and best practices. Develop concrete initiatives to start with natural capital accounting.

Input by central government

• Participation in working groups and overall coordination of the activities together with IUCN, True Price and MVO-NL.

Green Deal Productive landscape

Initiative

• Sustainable management of nature and agricultural landscape

Initiators

• Staatsbosbeheer, LTO Nederland

Input by field parties

 New ways of collaborating for more efficient and better-quality nature and landscape management; four practical situations focusing on the use of land, revenue models, and organisational methods

Input by central government

• Resolving legal and regulatory bottlenecks, disseminating knowledge and supporting the process

Green Deal Clean Beaches

Initiative

 Stimulation of the energetic society to collaborate in cleaning up beaches in combination with influencing waste handling behaviour of visitors

Initiators

 Local energetic people, beach restaurants, coastal municipalities, NGO's, companies, interest groups, Government

Input by field parties

- Beach cleaning activities and monitoring
- Pilots to influence waste handling behaviour of beach visitors
- Address cigarette butts as source of litter

Input by central government

- Facilitation and linking off parties and initiatives
- Sharing waste handling knowledge and stimulation of exchanging knowledge between parties

Green Deal Sustainable Waste to Energy ash reuse

Initiative

• Converting contaminated reusable material into a viable building component

Initiators

• Waste-energy plants, central government

Input by field parties

 Half of bottom ash processed by 2017, and 100% by 2020, with 75% of nonferrous metals being recovered by 2017

Input by central government

 Investigation into adjusting leaching norms; involvement in examining ways of using bottom ash in infrastructure projects

Green Deal Fishing for a clean sea

Initiative

 Closing the waste chain in the fishing sector for household waste, ship-generated waste and fishing for litter waste.

Initiators

• Fishers, fishing ports, waste management company, NGO, Government

Input by field parties

- Raise awareness and improve education concerning marine litter in fishing sector
- Improve waste facilities on board of fishing ships and in ports.
- Stimulate participation in fishing for litter project
- Identify alternative for dolly rope

Input by central government

 Facilitates cooperation, monitoring, linking parties and initiatives, international cooperation and implementation of OSPAR Regional Action Plan on Marine Litter

From waste policy to a circular economy in Flanders Flanders Materials Program

Euroday 2016

Lieze Cloots Public Waste Agency of Flanders - OVAM

Flanders in the '80-ies

Legally binding instruments:

- \rightarrow Ban on landfill and incineration
- \rightarrow Mandatory separate collection
- → Extended Producer Responsibility

• Economic instruments:

- \rightarrow Fees on landfill and incineration
- \rightarrow Pay As You Throw
- → Investment in waste parks, reuse centres

MIX of INSTRUMENTS = CRUCIAL

Awareness raising & communication

SAMEN MAKEN WE MORGEN MOOIER

Flanders toprecycling region: economic benefits

The waste management and recycling sector has grown by more than 5% per year in recent decades.

- The waste management and recycling sector employs
 12.000 people in Flanders. This is 0,5% of Flemish employment.
- Every direct job creates 1,3 indirect jobs elsewhere in the economy.

Limits to separate collection and recycling policy

Name of your presentation

2 à 3% GDP (3,4 billion euro) saved in material cost by 2020 Het sluiten van materiaalkringlopen leidt tot milieu-, maatschappelijke én economische winst.

> 27. 000 jobs In Flanders

SAMEN MAKEN WE MORGEN MOOIER

The three pillars of the Flanders' Materials Programme

In the Flanders' Materials Programme we combine ambitious long-term vision development, policy-relevant research, and concrete actions. This is done respectively in Plan C, the Policy Research Centre Sustainable Materials Management (SuMMa) and Agenda 2020; three pillars that reinforce each other.

Joining forces through the Flanders' Materials Programme

How does the Flanders

Materials Programme work?

1+1=3

Cooperation between entrepreneurs, researchers, policy makers and civil society in the Flanders Materials Programme helps to accelerate the transition towards a circular economy.

Strategic projects of 2015-2016

Transforming Flanders into a recycling hub for Europe through our seaport

Strengthening the metal recycling industry in Flanders

New jobs in the circular economy

Potential for a circular economy at several spatial scales (case region Genk)

Innovative building concepts for energy- and material-conscious construction

Business model innovation

2016:

Flanders Materials Program wins "The Circulars" an international award for the best and the most inspiring project for a circular economy.

 New long-term strategy of Flemish Government 2050: transition to circular economy 2.0

FLANDERS' MATERIALS PROGRAMME A NEW PHASE (2017-...)

FROM THREE PILLARS TO ONE TEAM

FROM FOCUS ON MATERIALS TO MULTIPLE TOPICS

FROM A SINGLE MINISTER TO SHARED ACCOUNTABILITY

FROM SECTOR-SPECIFIC TO CROSS-CUTTING

Lieze.cloots@ovam.be

Government of Flanders Public Waste Agency of Flanders Stationsstraat 110 2800 Mechelen, Belgium T: 015 284 284 F: 015 203 275 www.ovam.be info@ovam.be

Vereniging Afvalbedrijven

Partner in de circulaire economie

Innovation Projects: WtE in the circulair economy

22 november 2016

>100 years of experience in Waste to Energy

City of Amsterdam - powered by AEB

Waste biomass to energy

INDICATIVE MFPP Yields

More sustainable energy

www.hvcgroep.nl

Innovation: work in progress

in 🎔 f

HVC, active in:

Resource Recovery & Renewable Energy

GIVE SHAPE TO CIRCULAR ECONOMY | TOWARDS SUSTAINABLE ENERGY PROVISION | SUSTAINABLE DEVELOPMENT TOGETHER WITH RESIDENTS

Dutch Market IBA, nearly 100% application

Applied (Dutch) IBA in the Netherlands [kton/yr]

Traditional application using IBC

Green Deal IBA

.91

Recource Recovery Washing and fractionating of IBA

Resource Recovery

Upward potential of IBA

Resource Recovery

Heavy NF metal recycling by HVC (wASH)

HP14 and MSWI Bottom Ash (IBA)

		Result worst	Concentration							
nark		case	Limit, %	H420	H413	H412	H411	H410	H400	Method 1
			0,1	1						no Σ
	No M factors,		-1-							
	no cut-off		25						1	Σ
	No M factors,									
	no cut-off	318,7	25			1	10	100		Σ
	No M factors,	1								
	no cut-off	7,0	25		1	1	1	1		Σ
			Concentration							
			Limit, %	H420	H413	H412	H411	H410		Method 2
		-	0,1	1						πο Σ
H400, H41										
cut-off 0.1%			0.1/M							no
H411, H41										
cut-off valu										
1%	M=1		25						M	(1) 2
	M=1	1	0.1/M					1		-Σ
L			1				1			
	M=1	28,0	25				1	10M		6
			Concentration							
			Limit, %	H420	H413	H412	H411	H410	H400	Method 3
			0,1	1						πο Σ
	No M factors,									
	no cut-off									-
<u> </u>	values		0,1					1		Σ
	No M factors, no cut-off									
	no cut-oπ values		2.5				1			-
<u> </u>	No M factors,		2,5				1			Σ
	no cut-off values		25			1				
	No M factors,		25			1				Σ
	no cut-off									
	values		25		1					Σ
	values	0,2	Concentration							4
			Limit, %	H420	H413	H412	H411	H410	H400	Method 4
			L init, 70	11420	11413	11412		P1410	H400	Method 4
			0,1	1						πο Σ
No cut-off			•,1							
values	M=1	3.1	2,5					м		Σ
No cut-off		5,1	2,0							
values		0,4	25				1			Σ
		5,1								M5: M 1 with
			Concentration							cut-offs from
			Limit, %	H420	H413	H412	H411	H410	H400	M 2
	No M factors		0,1	1						no Σ
H400, H41			-1-							
cut-off 0.1%		8,2	25						1	Σ
H411, H412										
cut-off valu										
cut-off valu 1%		283,5	25			1	10	100		Σ

Landfilling IBA due to HP14

Landfilling NL relative to IBA production 7 Landfilled 6 Landfill including IBA 5 Production IBA Mton/year 2010 າດດາ Year

The risks of materials relate to their bio availability

rather than their composition.

Hopefully COM's position Doesn't stick to composition...

Dutch Waste Management Association • Partner in the circular economy • 12

Confidential

Revised classification of MSWI bottom ash

T. Klymko (ECN) A. van Zomeren (ECN) J.J. Dijkstra (ECN) O. Hjelmar (Danish Waste Solutions) J. Hyks (Danish Waste Solutions)

September 2016 ECN-X-16-125

The alternative

Let test results prevail

rather than theoretical calculation

District Heating

Alkmaar

Connection to the CHP gas-fired district heating grid of Langedijk and Heerhugowaard. Investment of € 17 mIn.

Other heat initiatives: • 30 kton/yr cow's manure drying • 100 kton/yr CO₂ capture

District Heating

Dordrecht

Trias Westland: Geothermal heat for Greenhouses

Potential geothermics given the geology:

- Lower Cretaceous:15-25%
- Trias: up to 80%

Heat demand for greenhouses Westland:

- Ca. 28PJ (Source: Westland Infra)
- Comparable to **1.000.000** houses...

Trias Westland: Participants in the project

- Letter of intend with 65 companies:
- Estimate of baseload complete area:
- Estimate coverage per hectare existing projects: 120-150MW (0,3 MW p.ha)

59,7MWth >100 MW

www.hvcgroep.nl

N.V. HVC, Jan-Peter Born strategy & business development

mobile: +31 622463367 E-Mail: j.born@hvcgroep.nl

Dutch Association for Secondary Construction Materials

Aalke Lida de Jong, AquaMinerals

Tata Steel

Blast furnace slag	1.300.000 t
Pelt & Hooykaas	
Steel slag	700.000 t
C&D granulates	100.000 t
AquaMinerals	
Drinking water residuals	200.000 t
Vliegasunie	
Fly ash, Bottom ash,	1.000.000 t
FGD gypsum	
Sibelco Ecomineraal	
Ashes, mineral by-	2.000.000 t
products, glas and fibres	
τοται	5 300 000 +

TOTAL

5.300.000 t

Marketing Value

Quality

Trustable supply

Certification E.o.w./byproduct

Recycled glass

Sibelco Green Solutions

Fly ash

Softening pellets

Sand kernel

100% calcite (CaCO3)

Same norms for waste and (virgin) building products

Size & knowledge: collaboration

By-product or end-of-waste status

No open market Different national systems

STOP

Waste is scary: too strict interpretations

